
Towards Interactive Inverse Reinforcement Learning

Stuart Armstrong
Future of Humanity Institute

University of Oxford
Machine Intelligence Research Institute

stuart@fhi.ai

Jan Leike
Future of Humanity Institute

University of Oxford
jan@fhi.ai

Abstract

We study an inverse reinforcement learning problem where the agent gathers
information about the reward function through interaction with the environment,
while at the same time maximizing this reward function. We discuss two of
the agent’s incentives: the incentive to learn (gather more information about the
reward function) and the incentive to bias (affect which reward function is learned).
Introducing a penalty term removes the incentive to bias, but not all manipulation
incentives.

1 Introduction

Inverse reinforcement learning (IRL) studies reinforcement learning problems where the goal is to
maximize rewards in absence of precise knowledge of the reward function. The usual assumption
is that there is an ‘expert’ who demonstrates the correct behavior with trajectories sampled from
an optimal policy. A solution to the IRL problem is typically achieved by recovering the reward
function (Ng and Russell, 2000; Abbeel and Ng, 2004; Choi and Kim, 2011).

Traditionally IRL has disconnected the reward maximization from learning the reward function. In
this paper, we consider IRL in an interactive setting where the agent receives information about the
reward function through interaction with the environment while attempting to maximize reward. Since
the information the agent receives about the reward function depends on the actions, the agent has
some control over which reward function it learns, and thus is incentivized to manipulate the learning
process. Our goal is to remove the incentives to manipulate, while maintaining the incentives to learn.

The closest related work in the literature is cooperative IRL (Hadfield-Menell et al., 2016) where
an agent plays a cooperative game with a human. The human starts with full knowledge of the
reward function which the agent does not observe, and they are both aiming to maximize this reward
function. Both can agree on prior knowledge, thus cooperative IRL overemphasizes the process of
communicating the reward function from the human to the RL agent efficiently. Moreover, humans
usually do not have a clear understanding of their reward function. Generally, it is unclear what kind
of assumptions we can make about the human, so it is difficult to provide formal guarantees about a
cooperative IRL algorithm. In this work we make the human feedback implicit: we assume that the
agent somehow receives information about the reward function through its actions.

Learning a reward function while maximizing reward leads to the problems caused by changes to an
agent’s reward function (Armstrong, 2010; Soares et al., 2015; Orseau and Armstrong, 2016). If the
agent anticipates changes in the reward function, it will expect to achieve less reward according to
the current estimated reward function. Therefore the agent has incentives to prevent this change. In
our setting this can lead to the undesired effect of the agent trying to avoid information about the
reward function.

In this paper, we define the problem of interactive inverse reinforcement learning and analyze some
of the agent’s incentives. We isolate an incentive to learn from an incentive to bias and illustrate their

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

effect on the learned reward function. Furthermore, we discuss strategies to avoid bias in the learning
process.

2 Interactive Inverse Reinforcement Learning

2.1 Interacting with POMDPs

A partially observable Markov decision process without reward function (POMDP\R) µ =
(S,A,O, T,O, s0) (Choi and Kim, 2011) consists of a finite set of states S, a finite set of ac-
tions A, a finite set of observations O, a transition probability distribution T : S × A → ∆S, an
observation probability distribution O : S → ∆O, and an initial state s0 ∈ S.

We model the environment as a POMDP\R. The agent interacts with the environment in cycles: in
time step t, the environment is in state st−1 ∈ S and the agent chooses an action at ∈ A. Subsequently
the environment transitions to a new state st ∈ S drawn from the distribution T (st | st−1, at) and
the agent then receives an observation ot ∈ O drawn from the distribution O(ot | st). The underlying
states st−1 and st are not directly observed by the agent.

A history ht = a1o1a2o2 . . . atot is a sequence of actions and observations. We denote the set
of all histories of length t with Ht := (A × O)t. A policy is a function π : (A × O)∗ → ∆A
mapping histories to probability distributions over actions. Given a policy π and environment µ, we
get a probability distribution over histories: µπ(a1o1 . . . atot) :=

∑
s1:t∈St

∏t
k=1O(ok | sk)T (sk |

sk−1, ak)π(ak | a1o1 . . . ak−1ok).The expectation with respect to the distribution µπ is denoted Eπµ.

2.2 Learning a Reward Function

The agent’s goal is to maximize total reward
∑m
t=1R(ot) up to the horizon m where R : O → R is

a real-valued reward function. We assume that the environment is known to the agent. The reward
function R is unknown, but there is a finite set of candidate reward functions R. The agent has to
learn a reward function in the process of interacting with the environment. Importantly, the agent is
evaluated according to the reward function it has learned at the end of its lifetime in time step m.

Traditionally, there is assumed to be an underlying reward function R∗, which the agent learns via
some algorithm. Thus at the end of m turns, an agent will have a distribution P : Hm → ∆R, which
specifies its posterior belief P (R | hm).

This P corresponds to the learning algorithm, and is in a sense more important than R∗. Indeed, R∗
is often a fiction, a reward function that is assumed to exist, independently of P , for ease of analysis1.
Thus we will investigate the properties of P itself, seeing it as the more fundamental object.

Example 1 (Cleaning and Cooking Robot). A household robot is trying to infer whether it should be
cleaning or cooking, R := {Rclean, Rcook}. The task is determined by a switch on the robot with
two positions labeled ‘clean’ and ‘cook’ that is initially set to ‘clean’. The robot is better at cooking
than at cleaning, so Rclean(o) = 3 and Rcook(o) = 5 for all observations o ∈ O (note that these are
two different reward functions).2

We formalize the problem as a 2-state POMDP\Rwith states S := {sclean, scook} corresponding to
the position of the switch. The initial state is the factory setting s0 := sclean. The robot can observe the
switch position, so O := {oclean, ocook} with O(oclean | sclean) = O(ocook | scook) = 1. Its action
set isA := {aflip, a∅} where aflip flips the switch and a∅ has no effect. We choose the horizon m = 1
and the posterior reward function distribution is P (Rclean | aoclean) = P (Rcook | aocook) = 1 for
all actions a. The action leading to highest reward for the agent is aflip which moves it to state to
scook and induces a reward of 5, while we prefer the action a∅ that retains the switch position and
only produces a reward of 3.

1Sometimes an objective solution R∗ exists (e.g., in a clear and crisp classification problem), sometimes
it can be partially defined at best (e.g., learning human values, Bostrom, 2014), and sometimes no objective
solution exists (e.g., in unsupervised learning).

2This simplified example does not model the agent actually carrying out its mission.

2

Example 1 illustrates the core problem of interactive inverse reinforcement learning: the agent is
incentivized to influence which reward function is learned. In this case, the agent can freely choose
its reward function, making the factory setting irrelevant.

For partial histories the agent’s estimate of the reward function also depends on its own policy: In
Example 1 the agent knows the state is s0 at time step 1, but it doesn’t know whether the reward
function will be Rclean or Rcook because that depends on its future action.

Given a partial history ht and the agent’s policy π, we define the expected posterior reward distribution

P (R | ht, π) := Eπµ[P (R | hm) | ht]. (1)

Given a default null policy π∅, we define

P (R | ht) := P (R | ht, π∅). (2)

2.3 The Value Function

Since the agent is maximizing reward while learning the reward function, its value function is the
expected total reward according to the posterior reward function.

V πP (ht) := Eπµ

[∑
R∈R

P (R | hm)

m∑
k=1

R(ok)

∣∣∣∣∣ ht
]
. (3)

Note that compared to reinforcement learning with a known reward function, the definition (3)
includes the past rewards, as future decisions can affect the reward associated with past observations.

3 Incentives for Reward Function Learning

At any time t, the expected value function (3) defined in terms of the reward function posterior P , so
we can analyze its behavior as the posterior changes. For the rest of this section, we fix the currently
estimated posterior p := P (· | ht) from (2) and suppose the agent does not learn any more about the
reward function.

IfR = {R0, . . . , R#R−1} is finite, a belief q overR is a point on the (#R−1)-simplex ∆#R−1 :=
{q ∈ [0, 1]#R |

∑
i qi = 1}. The corresponding expected reward function is given by Rq :=

∑
i qiR.

Let πq := arg maxπ V
π
q (ht) for V πq :=

∑
i qiV

π
Ri

, i.e., , πq is the policy that maximizes Rq. We
define V ∗q (ht) := V

πq
q (ht). In the edge cases where p is the i-th unit vector ei, this yields the policy

πi := πei , and its value V πi

Ri
= V ∗Ri

.

We are interested in the function Lht : ∆#R−1 → R, q 7→ V ∗q (ht) that maps a point q to the optimal
value under the reward function Rq corresponding to that belief. When we omit the subscript ht of L
it is implied that the current history is used.
Proposition 2 (L is Convex). For all histories ht the function Lht is convex and Lht(q) ≤∑
i qiV

∗
Ri

(ht) for all q ∈ ∆#R−1.

Back to p. The quantity
∑
i piV

∗
Ri

(ht) represents the expected reward if the agent immediately and
costlessly learns the correct reward function (drawn from P (· | ht)). In that case, it expects its value
to become V ∗Ri

(ht) with probability pi. If however the agent knows it will never learn anything about
its reward function ever again, then it is struck maximizing Rp. Thus we get:
Definition 3 (Incentive to learn). The incentive to learn (or value of information) is the difference∑
i piV

∗
Ri

(ht)− Lht
(p).

According to Proposition 2 the incentive to learn is always nonnegative. This is illustrated in Figure 1.
The orange curve is the graph of L and the green arrow shows the incentive to learn. Note that for
each i, the graphs of the linear functions q 7→ V πi

q (ht) (the two black lines) form a lower bound on
the orange curve: this is the value achieved by policies that maximize reward according to reward
function Ri.

Suppose that there is an action a that changed the posterior so that P (· | hta) =: p′ 6= p = P (· | ht).
Then the agent moves to a different point on the graph of L and gains up to V ∗p′ − V ∗p in value. For

3

belief

reward

0 1

L(q) = V ∗q

5

3
V π0
q V π1

q

qV ∗R1
+ (1− q)V ∗R0

p

Figure 1: The agent is uncertain between two reward functions R0 and R1. The horizontal axis
shows the current belief p over R1; q = 0 corresponds to certainty in R0 and q = 1 corresponds
to certainty in R1. According to Proposition 2, the graph of the function L (orange parabola) is
convex and bounded from above by the convex combination of the to the extreme values V ∗R0

= 5
and V ∗R1

= 3 (blue line). Moreover, it is bounded from below by the values of the two policies
maximizing R0 and R1. If our current belief is p, then the current optimal value V ∗p is found at
the black dot. We want to incentivize the agent to perform actions that increase the information
about the reward function without increasing bias, i.e., moving along the green arrow. We want to
disincentivize the agent to perform actions that manipulate the information about the reward function,
i.e., moving orthogonal to the green arrow (in expectation).

example, in Figure 1 the agent would aim to set p = 0 (collapse the posterior on R0) because this is
the maximum of L.
Definition 4 (Incentive to bias). The incentive to bias towards belief p′ is the difference L(p′)−L(p).

Note that the incentive to bias can be negative if p′ is a lower point on the graph of L.

4 Discussion

The incentive to learn and the incentive to bias capture how much the agent wants to receive
information about the reward function and how much it would like to manipulate its information
about the reward function. Generally, the incentive to learn is desirable, while the incentive to bias is
not.

The approach taken by Everitt and Hutter (2016) is to prevent policies from taking actions that are
biased. But sometimes no unbiased actions are available and then taking biased actions is unavoidable.
Instead, we could introduce a penalty term V πp − V πq for moving the belief from p to q through the
agent’s actions, similar to Armstrong (2010) and Soares et al. (2015).

However, removing the incentives to bias does not remove all of the agent’s incentives to manipulate
the learning process, as illustrated by the following example.
Example 5 (Randomly Selecting a Reward Function). The agent is uncertain between reward
functions R0 and R1. In each time step it can take action a0 or a1 where ai leads to a reward of
1 according to Ri and a reward of 0 according to R1−i. At some future point—say in ten time
steps—the agent will receive observations o0 or o1 with equal probability that determine whether it
should maximize R0 or R1. Thus P (Ri | a1 = a∅, o10 = oi, hm) = 1 for all hm compatible with a1

and o10. Alternatively, the agent can take a special action a0↔1 that randomly selects R0 or R1 in the
next time step. Thus P (Ri | a1 = a0↔1, hm) = 1/2 for all hm compatible with a1 = a0↔1.

P is unbiased because P (R0 | a∅) = P (R1 | a∅) = P (R0 | a0↔1) = P (R1 | a0↔1) = 1/2. But
the agent is incentivized to choose a0↔1 and randomly set its reward early, as it then gets an expected
reward of 9 (1 per time step for the time steps t = 2 to t = 10). Otherwise, it has a maximal expected
reward of 10/2 = 5 as it does not know which reward it should be maximizing before time step 10.

Interactive IRL is still in its infancy. In this paper we attempt a first step by providing a formal
definition of the problem and mapping out the solution space. Figure 1 illustrates the agent’s
incentives to bias, and its incentives to learn. The central question of interactive IRL, how to remove
the incentives to manipulate the process of learning the reward function remains wide open.

4

References
Pieter Abbeel and Andrew Ng. Apprenticeship learning via inverse reinforcement learning. In

International Conference on Machine Learning, 2004.

Stuart Armstrong. Utility indifference. Technical report, Future of Humanity Institute, University of
Oxford, 2010.

Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 2014.

Jaedeug Choi and Kee-Eung Kim. Inverse reinforcement learning in partially observable environments.
Journal of Machine Learning Research, 12:691–730, 2011.

Tom Everitt and Marcus Hutter. Avoiding wireheading with value reinforcement learning. In Artificial
General Intelligence, pages 12–22, 2016.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. Cooperative inverse
reinforcement learning. In Advanced in Neural Information Processing Systems, 2016.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine learning, pages 663–670, 2000.

Laurent Orseau and Stuart Armstrong. Safely interruptible agents. In Uncertainty in Artificial
Intelligence, pages 557–566, 2016.

Nate Soares, Benja Fallenstein, Eliezer Yudkowsky, and Stuart Armstrong. Corrigibility. Technical
report, Machine Intelligence Research Institute, 2015. http://intelligence.org/files/
Corrigibility.pdf.

5

http://intelligence.org/files/Corrigibility.pdf
http://intelligence.org/files/Corrigibility.pdf

	Introduction
	Interactive Inverse Reinforcement Learning
	Interacting with POMDPs
	Learning a Reward Function
	The Value Function

	Incentives for Reward Function Learning
	Discussion

